Structural Engineering Concepts

  • roof beams

    Understanding Roof Beams: A Comprehensive Guide

    What is a Roof Beam? Roof beams are essential structural elements that support the weight of a roof and ensure its stability. A roof beam is a horizontal structural member that spans the distance between two supports, typically walls or posts. Its primary function is to carry the weight of the roof deck, sheathing, and…

  • pure bending stress in beams

    Bending Stress in Beams- an engineering guide

    Bending stress refers to the stress induced in a beam or structural member when external forces or moments are applied perpendicular to the longitudinal axis, causing bending. It arises when one part of a material is in tension while the other is in compression. The larger the bending moment and the longer the beam, the…

  • beam clamps

    Beam Clamps – The Structural Engineer’s Secret Weapon

    Adjustable metal brackets designed to securely join, fasten or provide support connections for horizontal beams in construction projects and structural engineering applications. They utilize sturdy, bolted joints to create reinforced stability points. Made from galvanized or stainless steel, beam clamps wrap around or attach to beams with indented gripping surfaces and shear resistance strength to…

  • beam straps

    The Versatility and Power of Beam Straps in Construction

    Metal fixtures used to join, hang or support horizontal beams in construction projects. They are sturdy brackets made of galvanized steel or stainless steel that wrap around or clamp to beams to provide reinforced stability and weight-bearing capacity. Beam straps offer an alternative to traditional fasteners like bolts or welds for securing beams. They allow…

  • Mohr's circle

    Harnessing Mohr’s Circle Methodology for Stress & Strain Analysis

    Mohr’s circle provides a fundamental visualization tool for performing complex stress and strain transformations vital within civil and mechanical engineering applications. Originated by mathematician Otto Mohr, the technique converts three-dimensional states of stress or strain into a graphical format enabling convenient calculation of principal values, orientations and more. Mohr’s circle uniquely transforms complex two-dimensional stress…

  • compression stress-strain curve

    Interpreting Compression Stress-Strain Curves

    The compression stress-strain curve is a fundamental graph used in civil engineering for analyzing the behavior of structural materials like concrete, steel, soil and more when subjected to compressive loading forces. A stress-strain curve graphs the relationship between compressive stress, measured in units like psi or MPa, on the y-axis, and compressive strain, as a…