Crave the 10 Benefits of Lightweight Cellular Concrete

Cellular lightweight concretes represent innovative cement-based materials containing dispersions of micro-scale air voids to minimize density.

Enhancing specific desirable properties.

Modern foam or aerated concrete production along with advanced admixtures now facilitate wide-ranging lightweight concrete applications unmatched by traditional options.

Autoclaved Aerated Concrete Blocks

Autoclaved aerated concrete (AAC) stands as one of the most well-known air-cured foam concrete varieties.

AAC begins by introducing uniformly distributed air bubbles into an inorganic siliceous mix.

It gets cast into blocks and cured with pressurized steam to produce a solid yet highly porous concrete-like material up to 5 times lighter than normal weight concrete.

autoclaved aerated concrete blocks
Image source – khatabook.com/blog/

Key attributes of autoclaved aerated concrete blocks include:

  • Exceptionally low density – Reduced dead loads
  • High thermal insulation – Energy efficiency
  • Simple construction – Cuts, shapes, nails easily
  • Fire resistance and acoustic insulation

The combination of reduced weight and enhanced insulating properties makes AAC blocks ideal for structural wall construction. The cured foam blocks stand up to shear and compression forces while benefiting foundations, lifting costs, and heating/cooling needs.

Foamed Concrete Wall Panels

Another growing application applies controlled low density foamed concrete mixes into prefabricated sandwich wall panels. This enclosed insulation approach sandwiches a lightweight cellular concrete core between two layers of structural reinforced concrete.

See also  Examples of Pony Walls in Buildings
lightweight cellular concrete panels
Image source – eabassoc.co.uk/

Benefits as composite wall panels include:

  • Firm concrete interior and exterior faces
  • 90% less concrete used in middle foam
  • Composite action with high strength
  • Thinner wall profiles with less weight
  • Ducting channels easily incorporated

Cementitious foams eliminate heavy concrete usage while enhancing thermal separation when sandwiched to create lightweight insulated structural wall panels.

Cellular Lightweight Concrete Properties

The microstructure of various cellular concretes gives rise to several advantageous properties:

  • Low density – Reduced dead loads
  • High thermal insulation – Slows heat transfer
  • High specific strength – Strength-to-weight ratio
  • Impact energy absorption – Ductility
  • Air permeability resistance

Foaming concrete to various densities permits custom lightweight mixes targeted at specific performance objectives like insulation or damping according to project needs.

Density reduction directly benefits sustainability profiles through less embodied carbon and energy. Green building design increasingly utilizes lightweight foam concretes for enhanced eco-efficiency.

Structural Lightweight Aggregate Concrete

While air-entrained cementitious foams offer the lowest densities, lightweight aggregates introduced as partial replacements for normal stone mixes also cut concrete weights substantially.

Commonly used structural lightweight aggregates include:

  • Expanded clay pellets
  • Fly ash cenospheres
  • Perlite
  • Vermiculite
  • Pumice

Though not as light as aerated foams, lightweight aggregate concrete still achieves density reductions of 300-800 kg/m3 lower than 2300 kg/m3 typical of normal concrete. This allows simpler handling, reduced structural loads, and improved fire resistivity.

Fly Ash Based Lightweight Cellular Concrete

Beyond its role solely as aggregate, fly ash (FA) as a supplementary cementing material reacts in beneficial ways to reduce foam concrete weights while cutting carbon emissions:

  • Less clinker needed – Lowers cement requirements
  • Pozzolanic reactions – Additional strength gain
  • Uniform microstructures – Increased flowability
  • Smaller pores formed – Lower permeability
See also  Crafting Durable and Efficient Concrete Walls

FA-enabled foamed mixes also resist shrinkage cracking and enhance long term durability.

Over 50% of cement replaced by fly ash further improves sustainability metrics without compromising performance – an ideal synergy.

Lightweight Foam Concrete Cost

The expense of cellular or foamed concrete products depends principally on:

  • Manufacturing techniques – Labor, energy, equipment
  • Complex admixtures – Foaming agents, modifiers
  • Shipping considerations – Volume versus weight

However, validating lifecycle advantages against conventional materials reveals cellular concrete solutions frequently achieve lower total cost of ownership. This includes reduced loads requiring smaller structural members, quicker construction, enhanced energy efficiency, and lower maintenance over decades of service.

Low Density Cellular Concrete Uses

Lightweight foamed or cellular concrete opens broad possibilities across nearly all construction disciplines thanks to its diverse tunable property formulations. Common applications include:

  • Thermal insulation – External wall and roof elements
  • Backfilling material – Retaining structures, buried vaults
  • Road construction – Sub bases, embankments, slopes
  • Void filling – Bridge abutments, stabilization
  • Lightweight concrete blocks – Soundproofing, fireproofing, partitions
  • Landscaping – Planters, sculptures, features
  • Custom precast elements – Panels, furniture, cladding

Ongoing innovations continue expanding foamed concrete utilization wherever traditional concrete proves excessive.

Cement Consumption in Foam Concrete

Introducing stable air void structures allows equivalent strength development with 40% to 60% less cement content compared to conventional vibrated concrete. This major clinker reduction stems from:

  • Slow hydration – Less heat liberation stabilizes bubbles
  • Maximized nucleation – Numerous small pores evenly dispersed
  • Supplemental activity – Added fly ash, slag, or silica fume

Such cement factor reductions yield significant embodied carbon savings and other sustainability merits while retaining targeted physical properties.

See also  What is a Truss and Key Functions

Drying Shrinkage of Aerated Concrete

One downside of highly aerated cement is increased drying shrinkage strain compared to typical concrete. Thankfully, proven methods combat this issue:

Shrinkage Mitigation Solutions

  • Internal curing methods keep pores saturated
  • Balanced W/C ratios prolong moisture levels
  • Appropriate admixtures reduce surface tension
  • Adding fibres controls crack development
  • Wet curing done for 14+ days

Following best practices limits shrinkage cracking. Thermal expansion from heat curing also counteracts shrinking strains.

Foam Concrete Fire Rating Standards

Building code fire safety regulations set minimum requirements on flame spread, fuel contribution, and fire resistance ratings.

  • Flame spread / smoke developed < 25/50 – Foam blocks meet most stringent ratings
  • Adds no fuel content beyond water vapour release
  • Up to 4 hour fire rated lightweight foam concrete assemblies certified

The integrated thermal insulation provides protection from fire damage. Standards compliance confirms fire performance equal or better than competing wall technologies.

In summary, advanced cellular concrete materials enable transformative possibilities based on tailoring density reductions and property enhancements using sustainable cement-based systems. Ongoing innovations will undoubtedly continue expanding lightweight foam concretes across the entire construction spectrum.

Similar Posts

  • sieve analysis test for fine aggregate

    Guide to Sieve Analysis Test for Fine Aggregate

    Sieve Analysis is a common method adopted to measure the grain size distribution of an aggregate which is termed as gradation. It is often used in civil engineering and material testing field. This analysis can be done both in fine and coarse aggregates.  Aggregates having mean grain size which are less than 4.75 mm are…

  • tests on aggregates soundness

    5 Step Procedure of Soundness Test – US and IS Codes

    The soundness test is a critical standard test performed on both fine and coarse aggregates to determine their resistance to disintegration when exposed to weathering action. This test, also called the sulfate soundness test, aims to simulate the effects of repeated wetting and drying as well as freezing and thawing cycles that aggregates undergo after…

  • different types of cracks in concrete

    4 Methods of Repairing Common Types of Cracks in Concrete

    Concrete cracks are a common occurrence in foundations, walls, floors, and slabs. While cracks may seem purely aesthetic, they can lead to further deterioration if left untreated. This article explores why cracks form, how to identify common types of cracks in concrete, and proven methods for repairing cracks in residential and commercial concrete. Why Do…

  • bituminous conctere

    Understanding the Components and Performance of Bituminous Concrete

    It is commonly known as asphalt concrete, refers to a composite material used for paving roadways and other transportation infrastructure. It consists of liquid asphalt binder and graded mineral aggregate stones mixed together to form a viscoelastic mixture optimized for constructability and traffic loads. The term “bituminous concrete” comes from the naturally occurring hydrocarbon bitumen…

  • tests on aggregate impact value

    Aggregate Impact Test

    Procedure Aggregate Impact Value (AIV) = B/A x 100 Where B =  weight of aggregate passing through 2.36 mm sieve A = weight of the oven – dried sample Note AIV should not be more than 45% for use in concrete other than wearing surfaces, and 30% for concrete used for wearing surfaces such as…

  • concrete demolition

    Concrete Demolition – Processes, Methods, and Equipment

    As infrastructure and buildings age, concrete demolition becomes necessary before new construction can begin. Specialized tools and controlled techniques allow concrete to be broken up and hauled away while managing environmental impacts, costs, and safety concerns. Concrete demolition companies utilize jackhammers, diamond saws, hydraulic breakers, and other methods to fracture reinforced concrete. Projects must balance…

Leave a Reply

Your email address will not be published. Required fields are marked *